
NASA/TM-2003-212803

Discrete Abstractions of Hybrid Systems: Verification of
Safety and Application to User-Interface Design

Meeko Oishi, Claire Tomlin, and Asaf Degani

November 2003



Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA’s counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

The NASA STI Program Office . . . in Profile

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320



NASA/TM–2003-212803

Discrete Abstractions of Hybrid Systems: Verification of
Safety and Application to User-Interface Design

Meeko Oishi
Stanford University, Stanford, California

Claire Tomlin
Stanford University, Stanford, California

Asaf Degani
Ames Research Center, Moffett Field, California

November 2003

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000



Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
(301) 621-0390 (703) 487-4650



Abstract

Human interaction with a complex control system involves the user, the automation’s discrete

mode logic, and the underlying continuous dynamics of the physical system. The user-interface

of such systems always displays a reduced set of information about the entire system. Designing

interfaces such that all the pertinent information is available and assuring that this information

is correct is important for any user-interface, but especially so for safety-critical systems such as

automotive systems and autopilots. Here we describe a methodology for the analysis of hybrid

control systems that incorporate user interaction, with the goal of assuring that the information

provided to the user is correct. That is, the user-interface must contain all information necessary

to safely complete a desired procedure or task.

We begin with a hybrid system model which incorporates discrete mode logic as well as

nonlinear continuous dynamics. Using a hybrid computational tool for reachability, we find the

largest region of the state-space in which we can guarantee the state of the system can always

remain – this is the safe region of operation. By implementing a controller for safety which

arises from this computation, we mathematically guarantee that this safe region is invariant,

meaning that the system will always remain within the safe region if the determined controller

is used on the boundary of the safe region. Verification within a hybrid framework allows us

to account for the continuous dynamics underlying the discrete representations displayed to

the user. Using the computed invariant regions as discrete states, we can abstract a discrete

event system from this hybrid system with safety restrictions. This abstraction can be used to

determine what information must be provided on the display. Furthermore, in cases in which

an interface already exists, the abstraction provides the necessary input into existing interface

verification methods.

We provide two examples: a car traveling through a yellow light at an intersection and an

aircraft autopilot in an automatic landing/go-around maneuver. The examples demonstrate

the applicability of this methodology to hybrid systems that have operational constraints we

can pose in terms of safety. This methodology differs from existing work in hybrid system

verification in that we directly account for the user’s interactions with the system.

1



Contents

1 Introduction 3

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Yellow Interval Dilemma 7

2.1 Implications for Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 16

3.1 Mathematical Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Step 1: Separation into Hybrid Subsystems . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Step 2: Hybrid Reachability Analysis and Controller Synthesis . . . . . . . . . . . . 19

3.4 Step 3: Abstraction: Hybrid → Discrete . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Use of the Discrete Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Automatic Landing of a Commercial Aircraft 32

4.1 Hybrid Procedural Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Reachability Analysis of Hybrid Subsystems . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Discrete Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Implications for User-Interface Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Implications for User-Interface Design and Analysis 42

6 Conclusions and Limitations 44

2



1 Introduction

1.1 Problem Definition

Human interaction with automation is pervasive: almost every aspect of our lives involves computer

systems, information systems, machines, and devices. Whether it is a household device (such as

a microwave oven, an alarm clock, or a VCR), a heating/cooling system, a navigation system in

a car, or an autopilot in modern aircraft, the human operator is provided with information about

the automation and the processes it controls. With the exception of fully-automated systems, the

operator is also provided with the means to supervise the process: changing modes and behaviors,

or setting parameters, for example. Interaction with these systems is provided through an interface,

which conveys information about the underlying system dynamics and processes, and includes a

control panel through which the user can enter inputs (such as mode changes).

Complex automated systems are composed of many states, modes, events, parameters and

protocols. The user’s interactions with the automation are determined by the interface, always an

abstracted description of the underlying behavior of the machine [1]. Too much information can

overwhelm the user; not enough means the user may not be able to perform the desired task. In

commercial aircraft, the FAA mandates extensive bench tests, simulator tests, and in-flight tests

to certify aircraft autopilots [2]. However, it is difficult to anticipate all possible combinations of

system states, modes, and environmental behaviors. There is an increasing need to analyze systems

and interfaces before production or even before prototyping in safety-critical, expensive, or high-

risk applications. While analysis of smaller systems can be completed ad hoc, analysis of larger

and more complex systems requires systematic and rigorous methods.

Human-automation interaction in aviation has been a controversial topic since the advent of

computers and their integration into the cockpit [3, 4, 5]. Since the introduction of the glass cockpit

in the mid-1980s, pilots have voiced concern regarding their ability to fully understand and control

the automation. Indeed, the aviation industry has experienced many incidents and some accidents

in which the pilots became confused about the current mode or could not anticipate the next mode

in the automation [6, 7, 8]. The problem has been loosely termed mode confusion. Although

the engineering psychology community has historically dominated research on human-automation

interaction, there have recently been efforts by the formal methods community [9, 10, 11, 12, 13]

as well as system and control communities [14, 15, 16] to address these safety-critical problems.

To analyze and identify the type of problems particular to human interaction with complex

systems, one first needs to describe and represent the underlying system. In aircraft, for example,

behavior is controlled through both continuous and discrete elements: flight control systems con-

tinuously regulate aerodynamic surfaces, and autopilot systems determine the discrete mode-logic

3



of the aircraft (such as the application of altitude-holding modes or vertical speed-holding modes).

Such systems, which couple continuous dynamics and control systems with a “higher level” discrete

logic control, are known as hybrid systems. Whereas automated tools which verify propertiesfor

discrete logic systems have been used for some time, the development of such tools for hybrid

systems is an area of current active research.

1.2 Approach

In this report, we use a recently developed methodology in hybrid system reachability and controller

synthesis [17, 18, 19, 20] to analyze highly-automated, hybrid systems that are supervised by

humans. Verification is defined simply as the process of developing and executing a mathematical

proof that a system model satisfies a given specification. The ability to verify specifications about

a system model allows for heightened confidence that the actual system will perform as intended.

Methods and tools to verify systems have become paramount as the complexity of automated

systems has grown; it is no longer possible to rely on intuition, testing, and simulation to assure

that a system satisfies its specification. With a keen interest in cost-efficient design processes,

most hardware and some software companies have embraced verification techniques as part of their

product design process: verification is one of the key enabling technologies for increased automation.

Verification tools can aid in drastically reducing time spent on design and validation, but are also

crucial in ensuring that safety properties are upheld. In safety-critical applications such as airbag

deployment circuitry, medical devices, and aircraft autopilots, guarantees of safe operation are

paramount.

In November 1994, Intel’s infamous “floating-point-division” bug was discovered, eventually

forcing recall of the Pentium chip and leading to approximately US $500 million in charges against

Intel [21]. The cause of the bug was a logical error, in which a look-up table to aid calculating

quotients of floating point numbers was erroneously indexed [21, 22]. Identifying these errors before

mass production is of the utmost importance, given the expensive and even potentially dangerous

nature of these mistakes. However, chip-making companies are not the only ones with vested

interests in verification. Widespread use of automation in complex, safety-critical systems such

as aviation, has also led to an interest in the verification of human-automation systems, in which

humans interact with highly automated systems.

Formal verification and design of interfaces focuses on the information content of the display,

rather than the design of the graphical user interface [1, 23, 9, 24, 10, 11, 25]. It addresses the acute

problem of detecting design errors in human-machine interaction and verifying the correctness of

the interaction in complex and automated control systems. Recently, a theory, methodology, and a

detailed verification procedure was developed by researchers at NASA [11, 25]. The methodology

4



considers four elements: the machine model, the user model, the interface, and the task specifica-

tion. In [1], the authors address the automatic construction of simple and succinct interfaces for

highly complex systems. The cornerstone of the approach is the recognition that an interface is an

abstracted representation of the underlying system. Using this idea, discrete-state reduction tech-

niques may be used to abstract away superfluous information and construct a minimal interface.

To this end, algorithms for verification and construction have been developed and applied to the

verification and design of automated flight control systems [11, 25]. In [11], the hybrid plant model

is represented as a discrete system in which the system dynamics are modeled as plant-triggered

(dynamic) transitions.

Hybrid reachability analysis and controller synthesis addresses the problem of guaranteeing

system safety. Many problems of interest may be posed as reachability specifications on the sys-

tem’s set of continuous states. For example, in the problem of verifying system safety, the safety

specification is first represented as a desired subset of the state space in which the system should

remain, and then the following reachability question is posed: Do all trajectories of the system

remain within this set of desired states? The process of verifying safety then involves computing

the subset of the state space which is backwards reachable from this “safe set” of states; if this

backwards reachable set intersects any states outside the desired region, then the system is deemed

unsafe. Controller synthesis for safety is a procedure through which one attempts, by restricting

the behavior of the system through a controller, to prune away system trajectories which lead to

unsafe states.

In the past several years, a method [17, 18] and a numerical tool [19, 20, 26] have been developed

for verifying the safety of hybrid systems. The hybrid system model combines continuous state and

discrete event models: the discrete components represent different modes of the system and the

actions used to transition between modes, whereas the continuous components model the physical

process itself, such as the continuous response of an aircraft to the forces due to control surfaces

and engine thrust, and evolve according to smooth mode-dependent dynamics which incorporate

continuous inputs.

Applications of hybrid system theory to automated systems have traditionally assumed that

the controller itself is an automaton which runs in parallel with the system under control. Here

we consider the problem of controlling human-automation systems, in which the automaton and

a human operator share authority over the control of the system. In particular, we consider the

problem of analyzing user-interaction with hybrid systems. The main contribution of this report is

to show how hybrid human-automation systems, with the aid of the hybrid system reachability tool,

can be transformed into an equivalent discrete representation, which could later be incorporated

into the design of user-interfaces.

5



1.3 Organization

We first consider the problem of creating a discrete abstraction of a hybrid human-automation

system within the framework of an everyday driving problem: braking before or driving through

an intersection at a yellow light. Using this example as a backdrop, we describe a methodology

for verification of hybrid systems that incorporate user-interaction. The methodology has three

components: separation of the original hybrid system into subsystems, each of which contains

no user-controlled transitions between modes; reachability analysis and controller synthesis; and

abstraction to a discrete system. Each component is illustrated through the driving example.

Implications for interface design are discussed in detail. The second example concerns the automatic

landing function of a highly automated, safety-critical, commercial et aircraft.

These two examples demonstrate the types of problems this verification and abstraction method-

ology can address. The hybrid and discrete modeling framework and analysis used in this method

makes certain assumptions about relevant engineering, operational, and human-factors issues. We

discuss these limitations, as well as possible directions for future work in Section 6.

6



2 The Yellow Interval Dilemma

Consider the following scenario: A single driver on an expressway approaches an intersection when

suddenly the light turns yellow. The driver must decide whether to brake and try to stop at the

intersection, or to continue driving through the intersection before the red light appears. Typically,

the driver has an “intuitive” feel for the correct course of action [27], due to accumulated experience

about the particular car’s braking capabilities, the duration of the yellow light at a given inter-

section, and the road and weather conditions. However, many drivers might have had first-hand

experience to the contrary: these drivers slow down, only to realize (too late) that the car cannot

stop before the intersection, and then attempt to accelerate through the intersection.

There are several factors influencing the correct course of action at a yellow light. (By ‘correct’,

we mean a course of action that will allow the driver to avoid a red light violation, which occurs

whenever the car is in the intersection at any time during a red light.) Physical constraints include

not only the car’s limitations (i.e. braking and acceleration capabilities) but also the duration of

the yellow light (known as the yellow interval) as well as the posted speed limit. We can plot these

constraints for reasonable distances x from the intersection and reasonable speeds v at which the

car can travel. In Figure 1, notice that along the horizontal axis, x = 0 denotes the side of the

intersection closest to the approaching car, and x = L denotes the far side of the intersection, where

L = 10 m is the length of the intersection. Along the vertical axis, we examine positive speeds v,

up to the speed limit vmax = 24 m/s (approximately 50 mph) 1. The car has a range of braking

and acceleration capabilities: it is not possible to brake more than the maximum braking or to

accelerate more than the maximum acceleration. The yellow interval is a fixed duration τ , and we

assume that the car remains at or below the posted speed limit vmax. Another important factor

to consider is the driver’s reaction time: when the light switches from green to yellow, there is a

finite amount of time ∆ before the driver can react to the change. While the driver’s reaction time

varies per individual and per circumstance, for speeds considered in this example, a reasonable

reaction time for an average, alert driver, is ∆ = 1.5 seconds [27, 28, 29]. Taking these factors into

consideration, the question we wish to answer is: What actions does the driver need to take, and

when does the driver need to take them, to avoid being in the intersection during a red light?

We first determine where the car can be, relative to the intersection, so that it can stop at the

intersection during the yellow or red light. If the car stops right at the intersection, and we know

the driver used maximum braking to reach this point, we can determine where the driver could

1For the analysis that follows, we assume that during the green light, the car must travel at a positive speed v > 0
(the car is not allowed to come to a complete stop anywhere along the expressway); and during the yellow and red
lights, the car must travel at a positive speed v > 0 for all x except at the intersection x = 0 (the car is only allowed
to come to a complete stop exactly at the intersection).

7



have been τ + τred seconds before, where τred is the duration of the red light2. Modeling the car

as a point-mass, the car’s distance from the intersection is denoted x, the car’s speed is denoted

v = ẋ, and the control input u (which is the deceleration due to braking) is the second derivative

of position u = ẍ. We integrate this system backwards in time with u = umin (for the maximum

braking force) from x(0) = 0, v(0) = 0, which represents the car at a full stop at the intersection.

For a typical passenger car, umin = −4 m/s2, and for a typical intersection, the duration of the

yellow light is τ = 4 seconds [28, 30] and the duration of the red light is τred = 20 seconds. To

account for the driver’s reaction time, we assume that when the yellow light first appears, the car

continues at its current speed v for ∆ seconds before the driver can take any action. Therefore we

only integrate the system for τ + τred −∆ seconds. The result of this analysis shows that there are

certain combinations of speed and distance from the intersection from which the driver will simply

not be able to stop before reaching the intersection. (The details of this analysis will be presented

in Section 3.3.)

Now we analyze the second option: driving through the intersection. We wish to know where

the car can be, relative to the intersection, in order that the driver may drive through the in-

tersection before the light turns red. While driver manuals and automobile insurers certainly do

not recommend it as a practice, many drivers accelerate when a yellow light occurs. If the driver

accelerates with u = umax, where for a typical passenger car the maximum acceleration is umax = 2

m/s2, we can compute how far from the intersection the car must be when the yellow light first

appears, in order to avoid a red light violation. In this calculation, we assume the driver stops

accelerating and maintains v = vmax once the car reaches the speed limit. If, alternatively, the

driver simply coasts through the intersection with a constant speed, u = 0, we can compute how

far from the intersection the car must be in order to coast completely through the intersection.

Again, assuming that in the worst-case scenario the car just reaches the far side of the intersection

as the light turns red, we determine where the driver could have been τ seconds previous to this by

examining first where the driver could have been τ − ∆ seconds previously (through acceleration

with u = umax or through coasting with u = 0), then where the driver could have been ∆ seconds

previous to that (through coasting with u = 0). Mathematically, for an intersection of length L,

we first integrate ẍ = u with u = umax (for the case in which the car accelerates) or u = 0 (for the

case in which the car travels at a constant speed) from x(0) = L, v(0) ∈ [0, vmax] backwards in time

for τ − ∆ seconds. We then integrate ẍ = u with u = 0 from this result backwards in time for ∆

2In some cities, the front of the car (denoted by a distance dfront, measured from the front bumper to the mid-point
of the front wheel) is actually allowed to be in the intersection during the red light. While our model treats the car
as a point-mass, to account for this rule in our analysis, we could instead examine where the car could be relative
to x = dfront, and integrate backwards in time for τ + τred from this point instead of x = 0. The method proceeds
similarly as presented here. Alternatively, in another variation, the car can be completely inside the intersection
when a red light occurs without incurring a red light violation. In our analysis, for a car of length dcar, we would
first integrate from x = dcar instead of x = L. The rest of the analysis proceeds similarly as presented above.

8



−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

In
te

rs
ec

ti
o

n

v
max

In
te

rs
ec

ti
o

n

−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

Figure 1: The shaded (red) region shows the com-
bination of x and v for which the car can stop
at the intersection during a yellow or red light.
Along the curved section of the boundary of the
shaded region, the driver must use u = umin in
order to stop at the intersection.

Figure 2: The darker shaded (dark blue) region
shows the region of the state-space from which
coasting (u = 0) during the yellow interval will al-
low the car to completely cross the intersection by
the time the red light appears. The lighter shaded
(cyan) region shows the region of the state-space
from which acceleration at u = umax (until the
speed limit is reached) will allow the car to com-
pletely cross the intersection before the red light
appears.

seconds. The analysis shows that at lower speeds, the driver must be closer to the intersection to

be able to drive through the intersection before the red light appears.

We can depict these two scenarios graphically in the continuous state-space, for reasonable

distances x and speeds v. Figure 1 shows the maximum braking scenario: the shaded (red) region

depicts the combinations of distance and speed for which the driver will be able to stop at the

intersection. If the driver attempts to brake in the unshaded (white) region, even braking as hard

as possible, the car will end up in the middle of the intersection. Additionally, when the car reaches

the boundary of the shaded (red) region, the driver must enforce maximum braking u = umin: any

other choice of u (anything other than maximum braking) will inevitably result in a red light

violation.

Similarly, Figure 2 shows the acceleration/coasting scenario: the darker shaded (dark blue)

region depicts the combinations of distance and speed for which the driver can simply coast through

the intersection and reach the end of the intersection just as the light turns red. If the driver

attempts to coast through when the car is outside of the darker shaded (dark blue) region, the

car will still be caught in the intersection during the red light. Alternatively, the lighter shaded

(cyan) region depicts the combinations of distance and speed for which the driver must accelerate

9



−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

1

2

5

3

3

4

6

7

7

Figure 3: During the yellow light, the following state space can be divided into seven distinct
regions with respect to the car’s capabilities: (1) Safe to stop at the intersection, (2) Safe to coast
or accelerate through the intersection, (3) Safe to accelerate through the intersection, (4) Safe to
coast or accelerate through, or to stop at the intersection, (5) Safe to accelerate through, or to
stop at the intersection, (6) Safe (already through the intersection), and (7) Not safe to stop at the
intersection and not safe to drive through the intersection.

with u = umax in order to avoid a red light violation. (The driver could also accelerate in the

darker shaded (dark blue) region, but does not have to.) If the yellow light appears when the car

is outside of both of the shaded (dark blue and cyan) regions, the car will not be able to cross the

intersection before the red light appears. In the unshaded (white) region, there is no control law

(given u ∈ [umin, umax]) which will allow the car to avoid a red light violation.

To consider the possible driver actions during the yellow interval, we combine these two results

(from Figures 1 and 2)in Figure 3. We identify seven distinct regions: (1), (2), (3), (4), (5), (6),

and (7). There are some combinations of speed and distance for which the driver must eventually

brake in order to avoid a red light violation (1), some for which the driver must coast or accelerate

(2), some for which the driver must accelerate (3), some for which the driver can either brake or

accelerate (4), some for which the driver can either brake, coast, or accelerate (5), some for which

the driver can drive unconstrained (6), and, most troubling, some for which the driver cannot do

any of the above (7). When the car is in region (7) and a yellow light appears, the driver will

inevitably end up in the intersection during the red light! The driver is too close to the intersection

to be able to stop before the intersection, and too far away to coast safely through it.

This problem is known as the “yellow interval dilemma” [30, 31]. The portion of region (7) at

high speeds (near the speed limit) is called the “dilemma zone”. A common and well-publicized

problem [32] for traffic engineers is to design the yellow interval τ to minimize red light violations. To

minimize (or hopefully eliminate) the dilemma zone, the Institute of Traffic Engineers recommends

10



a variety of heuristic additions to the kinematic formula for braking. These additions are based on

a typical speed for most cars at a particular intersection, the length of the intersection, and the

presence of a “red light interval” (in which all directions at an intersection display red at the same

time) [28]. The dilemma zone can be eliminated by increasing the duration of the yellow interval

τ , or alternatively by decreasing the speed limit vmax. (Increasing τ decreases the slope of the

boundary of the region for safe coasting (region (2) and region (4)).) Additionally, we must consider

the human factor: increasing τ beyond approximately 5 seconds has been shown experimentally to

actually increase the number of red light violations at a given intersection: drivers quickly learn

that the yellow light is extremely long, and tend not to brake when encountering the long yellow

light [29].

To eliminate any possibility of a red light violation, the driver must never enter the unsafe

region (7) during a green light. If the car is never allowed to be in (7) during a green light, the car

will never be in the dilemma zone when the yellow light occurs. We again propagate the dynamics

ẍ = u, u ∈ [umin, umax], from the boundaries of the unsafe region (7) to determine for which

combinations of x and v there is a control u which will keep the car from entering the unsafe region

(7). We additionally constrain the dynamics so that v > 0 (we do not allow the vehicle to come to

a complete stop).

The result is shown in Figure 4. During the green light, the shaded (cyan) area is “safe” to

operate in: this is the region for which we know the car can always avoid a red light violation, if a

yellow light suddenly appeared. Note that the unshaded (white) region is slightly larger than the

region (7) of Figure 3 at low speeds: since the car cannot come to a complete stop during the green

light, the car must accelerate to “miss” the unsafe region. However, the region which accounts for

the dilemma zone is unchanged. Along the boundaries shown, certain control laws must be enforced

(the car must decelerate with u = umin along the upper left boundary of the dilemma zone, for

example).

This analysis has answered the original question: it has shown exactly what actions the driver

needs to enact, as well as when to enact them, in order to prevent a red light violation. The driver

must follow different control actions depending on the car’s current position and speed, as well as

the color of the light: the restrictions on these actions differ during green, yellow, and red traffic

lights.

2.1 Implications for Interface Design

To provide this information to the driver, an add-on dashboard device with sensor access to distance

from the intersection (Figure 9) could be used. This device could use the results of the previous

11



−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

−10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

x [m]

v 
[m

/s
]

Intersection

Figure 4: Safe region of operation (shaded, cyan)
during the green light to avoid being caught in the
dilemma zone during the yellow interval. The ac-
celeration and braking curves are shown in dashed
and dashed-dotted lines, respectively, for clarity.

Figure 5: Close view from Figure 4 of
the increased unsafe region (unshaded,
white) at low speeds to the left of the
intersection. This new boundary is
obtained by integrating the point at
the intersection of the braking curve
(dashed-dotted line) and the accelera-
tion curve (dashed line) backwards in
time. The unsafe region correspond-
ing to the dilemma zone is unaffected.

12



Light Color Region Interface Indication

Green
(Figure 4)

shaded
top boundary

bottom boundary
unshaded

Continue Driving

Brake

Accelerate

Unsafe

Yellow
(Figure 3)

(1), (4), (5)
boundary of (1) and (4)

(3)
(2)
(6)
(7)

Continue Driving

Brake

Accelerate

Accelerate or Maintain Current Speed

Continue Driving

Unsafe

Red
(Figure 3)

(1), (4), (5)
boundary of (1) and (4)

(6)
(2), (3), (7)

Continue Driving

Brake

Continue Driving

Unsafe

Table 1: Summary of abstraction from continuous state-space regions to interface indications during
green, yellow, and red lights. These abstractions, determined by control law restrictions necessary
to avoid a red light violation, are shown graphically in Figures 6, 7, and 8, respectively.

analysis (Figures 3 and 4) to advise the driver. In order to keep the advice simple, the analysis

allows entire regions of the (x, v)-space to be abstracted into simple, discrete indications.

For example, consider such a device which has four advisories: “Continue Driving”,“Brake”,

“Accelerate”, and “Accelerate or Maintain Current Speed”. During the green light, we

can abstract all of the shaded region of Figure 4 to the single discrete representation “Continue

driving”. This indicates that the driver is free to use any control u ∈ [umin, umax], accelerating

and decelerating at will. However, along the boundary, certain controls must be enforced, as shown

in Figure 6: along the dashed-bolded boundary, u = umin, and along the solid-bolded boundary,

u = umax. We can abstract each of these boundaries into simple representations: “Brake” and

“Accelerate”, respectively. These abstractions, as well as those for the regions relevant during

the yellow and red intervals, are summarized in Table 1. Note that during the yellow interval, we

assume braking to stop before the light is the preferred course of action when it is safely possi-

ble. Figures 6, 7, and 8 show the final abstractions as well as the control laws which dictate the

abstraction, during the green, yellow, and red traffic lights, respectively.

In this example, the interface indications are inspired by analysis of the system in terms of its

safety, in which the car is “safe” if it can avoid a red light violation. Although there are an infinite

number of conditions to consider, this analysis allows us to abstract these conditions into a finite

set of simple indications which represent, according to our model, everything that the driver must

know in order to safely interact with the system. The proposed interface (Figure 10) tells the driver

(based on the car’s speed and distance to the intersection) whether to stop at the intersection or

13



−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

u = u
min

u
min

 ≤ u ≤ u
max

u = u
max

−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

u = u
min

u
min

 ≤ u ≤ u
max

u = u
max

u = 0 or u = u
max

Figure 6: Regions of the state-space according to
control action during the green interval: u = umin,
u ∈ [umin, umax], u = umax. Following these con-
trol restrictions guarantees that the car will never
be caught in a red light violation.

Figure 7: Regions of the state-space according to
control action during the yellow interval: u =
umin, u ∈ [umin, umax], u = umax, u = 0 or
u = umax.

−120 −100 −80 −60 −40 −20 0 20
0

5

10

15

20

25

x [m]

v 
[m

/s
]

In
te

rs
ec

ti
o

n

v
max

In
te

rs
ec

ti
o

n

u = u
min

u
min

 ≤ u ≤ u
max

Figure 8: Regions of the state-space according to control action during the red interval: u = umin,
u ∈ [umin, umax].

14



Brake

Accelerate or
Maintain

Current Speed

Continue Driving

Brake

Accelerate

Figure 9: Add-on dashboard device.

Figure 10: Interface indications for
the dashboard device, as determined
from Figures 6, 7, 8, and Table 1. The
indication “Unsafe” is not shown
since unsafe operation will always be
prevented if the user follows the indi-
cations displayed on the interface.

to drive through the intersection.

The methodology presented here guarantees that the interface, generated from analysis of the

underlying continuous system, is correct. In general, the correctness of this interface is paramount:

if the interface provides incomplete or incorrect information, the driver may not be able to avoid a

red light violation. An incomplete or incorrect interface can appear nondeterministic to the user.

Such interfaces are extremely problematic and dangerous: they confuse the user by sometimes pro-

viding correct information and sometimes providing wrong information, or by simply not providing

enough information. As a result, the user is both misguided and confused [25].

In the yellow interval problem, we have generated a control law and determined the information

content of an interface which guarantees the safety of the physical system. Thus, this kind of analysis

tool, described here for the yellow interval example, can be used in the process of designing new

interfaces. In the next section, we formulate a methodology to analyze human-automation systems

which have both discrete and continuous dynamics.

15



3 Methodology

In this report, we propose a methodology to analyze a hybrid human-automation system based

on well-developed tools in the realm of hybrid system reachability analysis and controller synthesis

[18, 19, 17]. Given a hybrid model of the human-automation system (which includes how the user

interacts with the system), we find a discrete representation of the hybrid model based on the

hybrid system reachability result. Using this discrete representation, we can then design a correct

interface for the hybrid system. In cases in which a proposed interface already exists, an existing

and well-developed interface verification technique [11, 25] can be used to verify that the interface

accurately represents the underlying system.

The hybrid human-automation system represents the underlying physical system as well as

the mode-logic through which the user interacts with the physical system. While in general, all

possible behaviors of the actual system can be described in the hybrid system model, often only

a subset of these possibilities are included: this subset represents a procedural model. In many

safety-critical systems, users (such as aircraft pilots or nuclear power technicians) perform tasks

in highly structured ways. Here, we take advantage of this structure by modeling user-interaction

with respect to a particular procedure.

We compute a discrete abstraction of the hybrid human-automation system using hybrid system

reachability analysis. The methodology has three steps: first, a separation into smaller subsystems;

second, a hybrid reachability analysis and controller synthesis; and third, a discrete abstraction

based on the result of this analysis. We demonstrate this method with the yellow interval problem.

We shall begin by formulating the problem mathematically.

3.1 Mathematical Formulation of the Problem

We will consider two kinds of mathematical models in this problem: a hybrid model which incor-

porates both continuous and discrete state dynamics, and a discrete state model.

The hybrid model encapsulates the desired task or behavior that the user and the system should

accomplish. We represent the system mathematically by the symbol Hprocedure. The hybrid system

is defined by the tuple Hprocedure = (Qprocedure,Xprocedure, fprocedure, Σprocedure,Uprocedure, Rprocedure).

Qprocedure represents the set of discrete states, or modes, in Hprocedure; with n modes, the cardinality

of Qprocedure is |Qprocedure| = n. The function fprocedure is the set of continuous dynamics, which

we will denote by the functions fi, Uprocedure is the set of all continuous control input vectors Ui,

where i ∈ {1, ..., n}. The hybrid model may be explained as follows: each mode qi ∈ Qprocedure

has dynamics ẋ = fi(x, ui), in which the continuous state is x ∈ Xprocedure and the continuous

16



.

.

.

.

.

.

ẋ = f3(x, u3)

q3

u3 ∈ U3

ẋ = fn(x, un)

qn

un ∈ Un

ẋ = f4(x, u4)

q4

u4 ∈ U4

ẋ = f5(x, u5)

q5

u5 ∈ U5

ẋ = f1(x.u1)

q1

u1 ∈ U1

q2

u2 ∈ U2

g1(x) ≥ 0

ẋ = f2(x, u2)

g5(x) ≥ 0

σ5

σ4

σ1
δ5

δ3

σn

δ4

gn−1(x) ≥ 0
σn−3

.

.

.

.

.

.

q1

q6

q7

q9

qm
qm−2

γ1a

σ5

σ4

σ1
δ5

δ3

σm−1

δ4

γ8

qm−1

q3

q2

q5

q4

γ6

γ1b

γ7
γ2

σ6

γm−1

γm

γ5a γ5bγ9

δ9

σm−3

δm−1

Figure 11: Example of a hybrid model. The
naming convention for this report is that user-
controlled, disturbance, and automatic switches
are represented by σi, δi, and gi(x) ≥ 0 (the state-
based conditions under which the automatic tran-
sition occurs), respectively.

Figure 12: Example of a discrete model. The
naming convention for this report is that con-
trolled switches are represented by σi, and uncon-
trolled (disturbance and automatic) switches are
represented by δi and γi, respectively.

input ui ∈ Ui represents different control inputs in each mode. We assume that the continuous

dynamics are fully observable (we can measure all elements of the state vector x). The set of events

which can enable or force the hybrid system to transition between modes is indicated by Σprocedure.

The transition function Rprocedure dictates how the system switches according to discrete events

Σprocedure: for two modes qa, qb ∈ Qprocedure, a transition from qa to qb is possible when event

σ ∈ Σprocedure occurs if qb ∈ Rprocedure(qa, σ). The events in Σprocedure fall into one of three

categories: they can be user-controlled, disturbance (not controlled by the user or the automated

system), or they can be automatic (determined by conditions on x). In addition to the six elements

accounted for in the tuple Hprocedure, the set of hybrid states which the system can begin in (the

initial set) is represented by (Q0
procedure,X0). An example of a hybrid system is shown in Figure 11.

The discrete state model is represented as: Ginterface = (Qinterface, Σinterface, Rinterface), with

modes Qinterface, events Σinterface, and transition function Rinterface. The set of initial modes is

17



δ, t := 0 t ≥ τ

u ∈ [umin, umax] u ∈ [umin, umax] u ∈ [umin, umax]

x ∈ Xgreen x ∈ Xyellow x ∈ Xred

qgreen qyellow qred
[

ẋ
v̇

]

=

[

v
u

] [

ẋ
v̇

]

=

[

v
u

] [

ẋ
v̇

]

=

[

v
u

]

ṫ = 1 ṫ = 1 ṫ = 1

Figure 13: Hybrid model Hprocedure for a car traveling through an intersection, where the input u
is the car’s acceleration, and x := [x, v].

Q0
interface. Events in Σinterface fall into one of two categories: they are either controlled (initiated by

the user) or uncontrolled (automatic or initiated by a disturbance). An example of a discrete system

is shown in Figure 12 – we will use this discrete model to represent the interface of the system.

Throughout this report, discrete events are interchangeably referred to as events, transitions, or

switches.

In the yellow interval example, we model the car’s dynamics and allowable ranges of operation

during each color of the light. The hybrid model has modes Qprocedure = {qgreen, qyellow, qred}

and events Σprocedure = {δ, g1(x, t)}, where δ represents a disturbance event (the light turning

yellow), and g1(x, t) = t−τ represents a switching surface which corresponds to the duration of the

yellow interval. The transition function Rprocedure determines the relationship between the modes

and events through Rprocedure(qgreen, δ) = qyellow, and Rprocedure(qyellow, g1(x, t) ≥ 0) = qred. The

dynamics in each mode are shown in the hybrid automaton of Figure 13. The state x = [x, v] is

bounded by Xgreen = R × (0, vmax], Xyellow = {(R \ 0) × (0, vmax]} ∪ {0 × [0, vmax]}, and Xred =

{R− × (0, vmax]} ∪ {0 × (0, vmax]} ∪ {[L,∞) × (0, vmax]}, where R is the set of real numbers. We

are interested in positive speeds at or below the speed limit only, except right at the intersection

(x = 0) during the yellow and red lights. Time is indicated through a timer function ṫ = 1 in

each mode, with t ∈ R. The input u is bounded by the interval U = [umin, umax] in each mode,

which accounts for maximum deceleration umin and maximum acceleration umax. The initial mode

is Q0
procedure = {qgreen}, since we assume the driver is traveling along the expressway at a constant

velocity when the yellow light appears.

In the following sections, we show how to form a discrete abstraction of the hybrid procedural

model using a modified reachability analysis.

3.2 Step 1: Separation into Hybrid Subsystems

The first step in forming a discrete abstraction is to separate the hybrid procedural model, Hprocedure,

across user-controlled switches. Thus, within each subsystem, all of the transitions are uncontrolled

18



(disturbance and automatic) transitions. This will prepare us for the next step, a hybrid reacha-

bility analysis and controller synthesis to be performed on each hybrid subsystem.

Every hybrid subsystem has an initial mode defined either by a mode in Q0
procedure or by the

mode that a user-controlled switch leads to. We say a set of modes is automatic-reachable if the

modes are reachable from a given initial mode with automatic or disturbance transitions only. The

rest of the hybrid subsystem is determined by augmenting the subsystem containing this initial

mode with all modes automatic-reachable from the initial mode. The user-controlled transitions

are not included in the subsystems, since the user has the final authority over the switch, and

therefore guarantees of safety lie with the user. (Implications of this will be made clear in Section

3.4.)

For the yellow interval problem, the hybrid mode has no user-controlled switches. More general

(and often more complicated) hybrid models will separate into hybrid subsystems with more than

one mode, and which might even overlap. To clarify, imagine a generic hybrid model with n user-

controlled switches, and m = |Q0
procedure| initial modes, where | · | indicates cardinality of a given

set. This hybrid procedural model could have at most (m+n) hybrid subsystems, since one hybrid

subsystem can result from each user-controlled switch, and one hybrid subsystem can result from

each initial mode.

For example, the hybrid system in Figure 14 has n0 = 1 initial modes (q1) and n = 5 user-

controlled switches (σ1, σ2, σ3, σ4, σ5). It should have n + n0 = 6 or fewer hybrid subsystems. We

separate this model into five hybrid subsystems: HA consists of the modes automatic-reachable

from initial mode q1, HB consists of modes automatic-reachable from the user-controlled switch σ5

into q13, HC consists of modes automatic-reachable from switches σ1 into q5, HD consists of modes

automatic-reachable from q8, and HE consists of modes automatic-reachable from q11. This model

contains five (but not six) hybrid subsystems since the user-controlled switches σ2 and σ3 both lead

to the same mode, q8.

3.3 Step 2: Hybrid Reachability Analysis and Controller Synthesis

Hybrid reachability analysis provides us with a mathematical guarantee of safety to within the

limits of the hybrid model. We can define safety mathematically as the system’s ability to remain

within an allowable region of the hybrid state-space. Physical constraints on the system can be

incorporated in this manner: for example, if the car on the expressway must obey the speed limit,

the car’s velocity must not exceed 24 m/s (v ∈ (0, 24]). Since physical systems are also subject to

input constraints (due to actuator saturation, for example), we have bounded control authority to

keep the system within its allowable region of operation. In the yellow light dilemma, the driver’s

19



HD

HC

HA

HB
HE

q5

ẋ = f5(x, u5) q7

ẋ = f7(x, u7)

q6

ẋ = f6(x, u6)

q10

ẋ = f10(x, u10)

q8

ẋ = f8(x, u8)

q2

ẋ = f2(x, u2)

q3

ẋ = f12(x, u12)

q12

q13

q11

ẋ = f9(x, u9)

q9

ẋ = f11(x, u11)

ẋ = f3(x, u3)

ẋ = f1(x, u1)

q1

. .
.

σ1

σ3

.
.
.

σ5

ẋ = f13(x, u13)

σ2

σ4

Figure 14: Hybrid procedural automaton separated into hybrid subsystems HA, HB, HC , HD, HE .
User-controlled switches are indicated by σ1, σ2, σ3, σ4, σ5. (All other switches are uncontrolled.)
The initial mode is Q0

procedure = q1. Note that the hybrid subsystems overlap. Some of the hybrid
subsystems are shaded for clarity.

car has a maximum deceleration which represents the capabilities of the physical system: the car’s

brakes simply cannot provide more braking force than umin.

In order to remain within the allowable region of operation, which we denote W0, we are often

restricted to remain within an even smaller region: a subset of the allowable region of operation.

(See Figure 15.) This is because, for some states in W0, there may be no control input guaranteed

to keep trajectories of the system inside W0. The hybrid reachability analysis provides us with the

largest subset within W0 in which we can guarantee the system will always remain – this is the

maximal controlled invariant set W ⊆ W0. This is the safe region – the region for which the system

always has an input which will keep the system within the safe area. System trajectories can only

exit W along its boundary, thus, inside W any control u ∈ U can be used, but along the boundary

of W, a set of controllers u = u∗(x) which forces the system to remain within W must be used.

If any other control law is used along the boundary, the system will leave the safe region W, and

eventually will leave the allowable region of operation W0. If the system begins within W, it can

always remain within W, and therefore within W0. (If the system began in W0\W, we would not

be able to guarantee that it will always remain in W0.)

How do we formulate W0 and use it to obtain the safe region W, as well as the control law to

enforce safety, u∗(x)? We begin with the formulation of a cost function. Constraints on the system’s

continuous states and inputs are represented through the use of a cost function J(x, t) which we

20



Analysis

Safe region of 
operationof operation

Allowable region  

Hybrid Reachability

W

W0 W0

u = u∗(x)

Figure 15: Hybrid reachability analysis and controller synthesis determines the 1) safe region of
operation W ⊆ W0, and 2) the set of control laws u = u∗(x) which must be applied on the boundary
of W in order for the state of the system to remain within W, and therefore within the allowable
region W0.

will evolve backwards in time (t ≤ 0). The value of this cost function initially is J(x, 0) = J0(x),

where J0(x) indicates the boundary of the allowable region of operation W0. The values of x for

which J0(x) = 0 constitute the boundary of the allowable region; the sign of J0(x) for other values

of x indicates if the system is inside or outside of the allowable region. Using standard notation to

indicate the interior (W0)
◦, boundary ∂W0, and exterior (complement) (W0)

c of the set W0,

J0(x) > 0 if x ∈ (W0)
◦ (1)

J0(x) = 0 if x ∈ ∂W0 (2)

J0(x) < 0 if x ∈ (W0)
c. (3)

We can now indicate the allowable region of operation as W0 = {x ∈ X | J0(x) ≥ 0}.

To see how to apply this calculation, we examine the yellow interval dilemma. To avoid being

unsafe, or in the intersection during a red light, the initial cost function represents the car coasting

safely past the intersection at the start of the red light: J0(x) = x−L. Positive values of J0 occur

when the car’s position x is past the far side of the intersection. During a red light, if the car is

coasting, the allowable state-space region is x > L, which is where J0(x) > 0. Negative values of J0

occur when the car has yet to completely cross the intersection, and J0 = 0 when the car is just at

the boundary of the intersection, at x = L. However, we know from Section 2 that this boundary

is dependent on time – on the duration of the yellow interval.

The cost function J varies over time and over values of x: its boundary J(x, t) = 0 evolves as

x evolves according to the equations of motion, ẋ = f(x, u). We know that along the boundary

the control input u must have certain properties: to enforce safety the set of control laws u∗(x) is

synthesized as W is determined. This control law must be enforced when the state of the system

21



W0

∂J0(x)
∂x

f(x, u), u ∈ U

J0(x) > 0
J0(x) < 0

Figure 16: Initial cost function J0(x) and initial Hamiltonian H(x, ∂J0(x)
∂x

). The particular control
u ∈ U chosen for the Hamiltonian (see definition in text) is bolded.

reaches the boundary of W, in order to be able to guarantee that the state of the system will always

remain within W.

To find W within a given discrete mode, we first formulate the Hamiltonian H(x, ∂J(x,t)
∂x

) =

maxu∈U
∂J(x,t)

∂x

T
f(x, u) for a nonlinear system with dynamics ẋ = f(x, u), x ∈ R

n, u ∈ U ⊆ R
m.

The control chosen through this maximimization effectively tries to make W as large as possible.

Geometrically, for the initial cost function J(x, 0) = J0(x), the initial Hamiltonian is the inner

product of the inward-pointing normal of W0 (that is, ∂J0(x)
∂x

), and the function in the direction

closest to this normal (see Figure 16. The cost function J(x, t) evolves backwards in time according

to the partial differential equation (PDE)

∂J∗(x, t)

∂t
= −min

{

H

(

x, u∗,
∂J∗(x, t)

∂x

)

, 0

}

(4)

The minimization between H(x, ∂J(x,t)
∂x

) and 0 ensures that once a trajectory passes through an

unsafe region, it cannot later become safe. If the cost function J(x, t) converges to J∗(x) as

t → −∞, the safe region of operation is defined as

W = {x ∈ W0 | J
∗(x) ≥ 0} (5)

The control law synthesized from this calculation

u∗(x) = {u ∈ U |
∂J∗(x)

∂x

T

f(x, u) ≥ 0} (6)

must be applied along the boundary of the safe region, for x ∈ ∂W, in order guarantee that the

region is invariant.

22



In the yellow interval problem, we complete one hybrid reachability analysis. This results in safe

regions for each phase of the light: Wgreen, Wyellow, and Wred. During the yellow light, the user’s

options (stopping before the intersection, coasting through it, or accelerating through it) result in

regions Wbrake, Wcoast, Waccel: Wyellow = Wbrake∪Wcoast∪Waccel. Figures 1 and 2 show the results

of the hybrid reachability analysis: the shaded region of Figure 1 is Wbrake, the region in which

safe braking is guaranteed. The darker shaded region of Figure 2 is Wcoast, the region in which safe

coasting is guaranteed, and the lighter shaded region is Waccel, the region from which the car can

safely cross the intersection while accelerating at the maximum acceleration. In Figure 2, the dark

shaded region is the set of values of x = [x, v] for which J∗
coast(x) ≥ 0, where J∗

coast(x) = x−L+ vτ .

(Recall the duration of the yellow interval is τ .) On the boundary of Wcoast, J∗
coast(x) = 0, and

outside of Wcoast, J∗
coast(x) < 0. In Wcoast, any control which satisfies u ≥ 0, u̇ ≥ 0 can be used.

The light shaded region Waccel in addition to the states included in Wcoast are those combinations

of x and v for which acceleration at u = umax will allow the car to drive through the intersection

before the red light appears. In this case,

J∗
accel(x) =

{

x − L + vτ + umax(τ − ∆)2/2 for v ∈ (0, v]

x − L + vmaxτ + ∆(v − vmax) −
(v−vmax)2

2umax
for v ∈ (v, vmax]

(7)

with v = vmax − umax(τ − ∆). Inside Wbrake, any control in the allowable range U may be used,

and on the boundary of Wbrake, u∗ = umin must be enforced to guarantee that the system will not

leave the safe region Wbrake. We can find a closed-form solution J∗
brake(x) = −x − v∆ + v2

2umin
for

x ∈ Xyellow; notice that this parabola is truncated at vmax for x ≤ −vmax∆ + v2
max

2umin
.

For the red light, Wred = Wbrake ∪ {[L,∞) × (0, vmax]}. During the green light, propagating

the boundaries of Wyellow results in a slightly smaller set, as shown in Figure 4. Since the car

is not allowed to come to a full stop (v = 0) during the green light, we cannot allow the car to

be “trapped” in the lower unshaded region. The optimal cost function for the changed boundary

(along which u = umax must be enforced) is Jgreen(x) = −x+ x̃+ v2−ṽ2

2umax
, with ṽ the smaller solution

to 0 = 1
2umin

ṽ2 + (τ − ∆)ṽ + (τ − ∆)2umax/2 − L, and x̃ = ṽ2

2umin
− ∆ṽ.

For more complicated hybrid systems, with more than one mode, this analysis is extended to

include the option of switching to other modes. The hybrid reachability algorithm, introduced in

[17], accounts for the effect of mode changes on the continuous evolution of J(x, t). Figure 17 shows

the algorithm graphically for two modes. Evolution in one mode, q1 does not evolve independently

of the dynamics of q2 if there is a switch which can occur from q1 → q2. For example, if there is

an allowable region (W1)0 in mode q1 and another allowable region (W2)0 in mode q2, and q1 → q2

through an automatic transition across a switching boundary g(x) = 0, the safe regions W1 and W2

cannot be computed independently. For the system shown in Figure 17, if the switch is ignored,

the safe regions in q1 and q2 are A and D, respectively. However, the switch effectively increases

23



(W1)0

A

B

C

D

(W2)0

g(x) = 0

q1 q2

Figure 17: The hybrid reachability algorithm accounts for switches to other modes. Note when the
switch across g(x) = 0 is accounted for, safe regions W1 = A ∪ B and W2 = C ∪ D are larger than
when determined in isolation in modes q1 and q2, respectively. (A is the safe region in q1, and D is
the safe region in q2 if the switch from q1 to q2 is not allowed.)

the safe region by allowing the system to switch to safety in the next mode. In this case, the safe

region is W1 = A ∪ B in mode q1 and W2 = C ∪ D in mode q2.

In general, closed-form solutions (such as the ones in the yellow interval dilemma) are not

possible for W. Additionally, when the safe region is represented as the intersection of various cost

functions, simply integrating backwards in the presence of continuous inputs and disturbances may

not yield the correct solution, since intersections of the evolving boundaries may not be analytically

determined. Accurate computational methods to determine W are an important topic of research,

and offer solutions when analytic solutions are not possible or tractable. Computational algorithms

have been developed to find the boundary of W using level-set methods [19]. Further details of this

algorithm (for a full hybrid system) can be found in [17], and information regarding computational

implementation can be found in [33, 20, 26].

3.4 Step 3: Abstraction: Hybrid → Discrete

We create a discrete abstraction based on the results of this analysis. In many complex human-

automation systems, the user has control over discrete switches, but the continuous control to

maintain safety within each continuous mode is automatically enforced. Within each hybrid sub-

system, the controller for safety u∗(x) is enforced. (This is not the case for the car example, in

which the user must enact various simple continuous control laws in order to remains safe, but will

be demonstrated in Section 4.)

24



x ∈ ∂W

x ∈ ∂W

x ∈ W
◦

x ∈ W
c

u ∈ U
ẋ = f(x, u) ẋ = f(x, u∗) ẋ = f(x, u)

x ∈ W◦

Figure 18: Hybrid automaton H∗.

W
◦ ∂W W

c

α

β

Figure 19: Abstracted discrete automaton G∗.

We assume that if the system begins within a safe region of operation, the only way the system

can become unsafe is through user-controlled discrete switches. Therefore, if the user enters a

hybrid subsystem safely, the system will remain safe until the next user-controlled discrete switch.

The system is also unsafe if it begins in an unsafe region of operation. (This is the case in the

yellow interval problem, when the light turns yellow and the car is in region (7) of Figure 3.)

The goal of this section is to abstract from the hybrid model H a discrete system G∗, which

can be used in interface analysis, verification, and design methods. We begin with the simplest

hybrid system: one with only one mode. For a generic, one-mode hybrid system H, implementing

the control law u∗(x) results in a three-mode hybrid system H∗ as shown in Figure 18. Switching

between modes is dictated by evolution of the continuous state x. No switches exist from x ∈ ∂W to

x ∈ Wc since, as a result of the hybrid reachability analysis and controller synthesis, the control law

u = u∗(x) enforces safety when x ∈ ∂W. We form the discrete system G∗ from H∗ by partitioning

the state space into the interior, boundary, and complement of W: x ∈ {W◦, ∂W,Wc}. Since

W consists of its interior and its boundary, note that W = W◦ ∪ ∂W, and W ∩ Wc = {∅}.

The discrete system G∗ = (Q∗, Σ∗, δ∗) has modes Q∗ = {W◦, ∂W,Wc}, which correspond to the

continuous regions of operation in H∗. The continuous state-based transitions of H∗ become the

events Σ∗ = {α, β} in G∗. The transition function R∗ is depicted graphically in Figure 19.

We now consider a hybrid system H with two modes Q = {qi, qj} and an automatic transition

Σ = {γ} which takes the system from qi to qj . The hybrid reachability analysis results in a hybrid

system H∗, which we abstract to G∗ in Figure 20. G∗ has events Σ∗ = {αi, βi, αj , βj , γ} and modes

25



W
◦
j

W
c
i

αj

γ γ
γ

γ

∂Wj W
c
j

W
◦
i ∂Wi

αi

βi

βj

γ
γ

γ

Figure 20: Nondeterministic abstraction of generic two-mode hybrid automaton qi
γ
→ qj .

Q∗ = {W◦
i , ∂Wi,W

c
i ,W

◦
j , ∂Wj ,W

c
j}. Because of the hybrid reachability analysis, if the system

begins in a safe region (W◦
i or ∂Wi) then γ will keep the system in a safe region (W◦

j or ∂Wj).

However, there is no guarantee of safety if the system begins in the unsafe region Wc
i . Notice that

G∗ is nondeterministic: W◦
i

γ
−→ {W◦

j , ∂Wj}, ∂Wi
γ

−→ {W◦
j , ∂Wj}, and Wc

i

γ
−→ {W◦

j , ∂Wj ,W
c
j},

but that the nondeterminism does not create ambiguity with respect to safety: states which are

initially safe will always remain safe.

Consider the same hybrid system, but with one user-controlled transition Σ = {σ} from qi to qj .

Because σ is user-controlled, we can make no guarantees of safety in the new mode qj : even if the

user starts within a safe region (W◦
i or ∂Wi), the user could switch the system into an unsafe state

(Wc
j ). We partition the state space according to the intersection of Wi and Wj , as shown in Figure

21. This results in 32 = 9 regions x ∈ {(W◦
i ∩W◦

j ), (W◦
i ∩∂Wj), (W

◦
i ∩Wc

j ), (∂Wi∩W◦
j ), . . . , (Wc

i ∩

Wc
j )} for qi. When the user applies σ, the system transitions deterministically from qi into qj .

Figure 21 shows the deterministic discrete system G∗. Notice that this abstraction results in a

discrete system with far more modes: it has 3 + 32 = 12 modes, while the nondeterministic system

in Figure 20 has 3 + 3 = 6 modes.

When more than one user-controlled switch is possible from a given mode the state-space must

be further partitioned. For example, examine q2 in Figure 14: the partitioning of the state-space

in mode q2 must not only account for the state-space in mode q5, but also the state-space of mode

q8. To account for all possible user-actions, we define for a mode qi the set of user-reachable modes

26



αj βj αj

αi

βi

βj

βi

αj βj

αi

σ

qj : W◦
j

αj

βj
qj : Wc

j

σ

qj : ∂Wj

σσσσ σ σ σ

ηj

qi : (Wc
i ∩W

◦
j )

qi : (Wc
i ∩ ∂Wj)qi : (W◦

i ∩ ∂Wj)

qi : (W◦
i ∩W

c
j )

qi : (W◦
i ∩W

◦
j )

θj

qi : (Wc
i ∩W

c
j )

θj ηj

qi : (∂Wi ∩W
◦
j )

qi : (∂Wi ∩ ∂Wj)

qi : (∂Wi ∩W
c
j )

θj ηj

αi

βi

Figure 21: Deterministic abstraction G∗ of generic two-mode hybrid automaton qi
σ
→ qj . The

notation used indicates the mode (qi or qj), followed by the state-space partition the system is
in. Note the transitions θj , ηj , which account for continuous-state based transitions between the
boundary and exterior of mode qj , respectively, are hidden in the nondeterministic abstraction
(Figure 20).

27



P (qi) as all distinct modes reachable through a user-controlled transition:

P (qi)
4
= {qk | R(qi, σ̄) = qk} (8)

where σ̄ is the set of all user-controlled events possible from qi. The cardinality ni = |P (qi)|

determines the number of modes in G∗ abstracted from one hybrid mode of H. The state-space

in mode qi must be partitioned into 3ni+1 regions, and the state-space in mode R(qi, σ), σ ∈ σ,

must be partitioned into 3(|P (R(qi,σ))|+1) regions. In Figure 14, P (q2) = {q5, q8}, and since n2 = 2,

the state-space of q2 must be partitioned into 3(2+1) = 27 discrete modes; P (q5) = {q8}, so the

state-space of q5 will be partitioned into 32 regions; and P (q8) = {∅}, so the state-space of q8 will

be partitioned into 31 regions.

We can now consider the more general case: a r-mode hybrid subsystem H = (Q,X , f,Σ, u, R)

with nexit modes from which the user can manually exit the subsystem H. After applying the

control law for safety u = u∗(x), we obtain the safe region of operation W ⊆ Q × X . The discrete

system G∗ = (Q∗, Σ∗, R∗) is formed by abstracting the hybrid subsystem, based on a state-space

partition of W in each mode q ∈ Q. For each mode q ∈ Q, we partition the state-space into P (q)

regions. Those modes with no user-reachable modes (i.e. modes q for which P (q) = {∅}) will have

three regions; the nexit modes before user-controlled transitions will be partitioned according to

their intersection with user-reachable modes outside of the subsystem H. Each region is relabeled

as a discrete mode q∗ ∈ Q∗. By construction, R∗ accounts not only for the transitions in R (with

labels appropriate for a discrete system), but also for transitions between the partitions which

create Q∗. In general, R∗ will be nondeterministic, but unambiguous with respect to transitions to

unsafety.

We combine all of the abstracted hybrid subsystems into a single discrete system G∗
procedure,

through the user-controlled switches. This abstraction makes safety unambiguous: it assumes that

where possible, safety is guaranteed (across automatic and disturbance transitions); where safety

cannot be guaranteed (across user-controlled transitions), the consequences of the user’s actions

with respect to system safety are deterministic. Across automatic transitions, less refinement in

the state-space partition is necessary, since the system cannot become unsafe through an automatic

transition. Across user-controlled transitions, more refinement is necessary in order to determine

how the user, through the user’s possible discrete actions, will affect system safety.

As an example, a portion of a hybrid system Hprocedure is shown across two of its hybrid

subsystems in Figure 22. Figure 23 shows the abstracted model G∗
procedure for this same portion.

The mode before the switch is abstracted deterministically, but other modes within the hybrid

subsystems are then abstracted nondeterministically.

28



H2H1

qk

ẋ = fl(x, ul)

qlqi qj

ẋ = fk(x, uk)

γj

σ
γk

ẋ = fj(x, uj)ẋ = fi(x, ui)
. . . . . .

Figure 22: Portion of hybrid system Hprocedure which displays two hybrid subsystems, H1 and H2.

Notation conventions are established in Figures 22 and 23. Hybrid reachability analysis results

in Wi for each hybrid subsystem Hi, where Wi ⊆ Qi × X . For example, W2 ⊆ {qj , qk, ql, . . .} × X .

Since we need to examine modes within Wi to properly create the discrete abstraction, we use W
qj

i

to indicate the portion of Wi in mode qj ∈ Qi. For example, to indicate the interior, boundary,

and exterior of W2 in mode qk ∈ Q2, we write (Wqk

2 )
◦
, ∂Wqk

2 , (Wqk

2 )
c
. The switches in G∗

procedure

are labeled according the following convention:

αj occurs when x evolves from the interior of W
qj

i to its boundary (
(

W
qj

i

)◦
to ∂W

qj

i ).

βj occurs when x evolves from the boundary of W
qj

i to its interior (∂W
qj

i to
(

W
qj

i

)◦
).

θj occurs when x evolves from the boundary of W
qj

i to its exterior (∂W
qj

i to
(

W
qj

i

)c
).

ηj occurs when x evolves from the exterior of W
qj

i to its boundary (
(

W
qj

i

)c
to ∂W

qj

i ).

Recall the hybrid procedural model Hprocedure of the yellow interval problem (Figure 13). The

discrete abstraction G∗
procedure has more than 32 = 9 modes since we separate not only Wyellow

and Wred, but also the boundaries of Wgreen, Wyellow, and Wred, according to the type of action

the driver must follow. Table 2 indicates the correspondence between G∗
procedure of Figure 24 to

the state-space analysis in Figures 3 and 4 by noting the following correspondences: Note that

Wyellow = Waccel ∪ Wcoast ∪ Wbrake and Wred = Wbrake ∪ {[L,∞) × (0, vmax]}. Also note that

∂Wbrake is defined for v > 0; and that the point (x, v) = (0, 0) is denoted by the indication STOP.

3.5 Use of the Discrete Abstraction

The discrete abstraction G∗
procedure of the hybrid human-automation system Hprocedure can now be

used to analyze, verify, or design user-interfaces for Hprocedure. A user-interface can be modeled by

by a discrete event system, with the modes determined by the indications on the display, and events

determined by internal transitions in the system, or by the user’s actions. The user activates various

knobs, buttons, and toggles to change the hybrid system’s mode. The interaction between the user’s

29



αj βj

αi

βi

αi

αjβj

βi

αj

γkγkγk
γk γk

βj

(

W
ql
2

)◦
αl

βl

(

W
ql
2

)c

(

W
qk
2

)◦
αk

βk

(

W
qk
2

)c

∂W
ql
2

∂W
qk
2

γj
γj γj

γj

(

W
qi
1

)◦
∩ ∂W

qj

2

(

W
qi
1

)◦
∩

(

W
qj

2

)◦

θj

γj

σσσ

(

W
qi
1

)c
∩

(

W
qj

2

)c

σ

ηj

σ

(

W
qj

2

)◦
αj

βj

σ

(

W
qi
1

)◦
∩

(

W
qj

2

)c

∂W
qj

2

θj ηj

(

W
qj

2

)c

(

W
qi
1

)c
∩

(

W
qj

2

)◦

(

W
qi
1

)c
∩ ∂W

qj

2

∂W
qi
1 ∩

(

W
qj

2

)◦

θj ηj

∂W
qi
1 ∩ ∂W

qj

2

∂W
qi
1 ∩

(

W
qj

2

)c
αi

βi

σσσ

H1

H2

Figure 23: Portion of discrete model G∗
procedure across hybrid subsystems H1 and H2. Modes before

the user-controlled switch σ are modeled deterministically; the rest of the hybrid subsystems are
modeled nondeterministically to reduce the complexity of the abstracted model.

30



Light Color Region Mode in Gprocedure (Figure 24)

Green
(Figure 4)

shaded
braking boundary

accelerating boundary
unshaded

W◦
green

∂Wgreen−brake

∂Wgreen−accel

Wc
green

Yellow
(Figure 3)

(1), (4), (5)
boundary of (1) and (4)

(2),(3),(4),(5),(6)
(2),(4),(6)

(7)
(x, v) = (0, 0)

W◦
brake

∂Wbrake

Waccel

Wcoast

Wc
yellow

STOP

Red
(Figure 3)

(1), (4), (5)
boundary of (1) and (4)

(6)
(2), (3), (7)

(x, v) = (0, 0)

W◦
brake

∂Wbrake

Wred \Wbrake

Wc
red

STOP

Table 2: Summary of abstraction from continuous state-space regions (Figures 3 and 4) to discrete
modes of G∗

procedure (Figure 24).

actions and the hybrid system’s modes are encapsulated by a finite-state machine representation.

In Section 2, an interface was constructed based on the result of the reachability analysis.

However, in some situations, an interface may already exist. In this case, it is of high interest to be

able to verify that the interface correctly represents the underlying, hybrid system. The authors in

[11, 25] developed a method to formally verify that one discrete system (such as an interface) is a

correct abstraction of another discrete system (such as a “truth” or procedural model of a system).

Using these methods, the existing interface interface can be verified against the discrete abstraction

developed in Section 3.4, according to the method developed in [11, 25].

The same authors have also developed an interface design technique [1] using state reduction

techniques for incompletely-specified finite state machines. State reduction involves creating a

reduced finite state machine, based on a given output for a larger, more complex finite state

machine. Presuming that the original, complex finite state machine represents the “truth” model,

the reduced model represents the interface for the original system. While the interface in Section 2,

constructed by hand from the reachability analysis, has only four modes, in general, the resulting

discrete automaton may contain far more modes. These modes may represent more information

than the user needs in order to accurately interact with the system. In this case, a correct and

succinct interface can be constructed according to discrete-state reduction techniques as in [1].

31



(Yellow Light) (Red Light)(Green Light)

STOP

βgreen−brake αgreen−brake

γ
∂Wbrake

γ

∂Wbrake

∂Wgreen−brake

W◦

green

δ

δ
δ
δ

δ

δ

δ

δ

δ

βstop

W◦

brake
W◦

brake

Wcoast

Wred \WbrakeWaccel

∂Wgreen−accel

βstop

αgreen−accel βgreen−accel

αbrake αbrake

γ

γ

Figure 24: Discrete procedural model G∗
procedure for yellow interval problem. The modes in the set

Q∗
procedure are defined in Table 2, and the set of events is Σ∗

procedure = {δ, γ}. The event δ occurs
when the yellow light appears, and the event γ occurs τ second later, when the red light appears.

4 Automatic Landing of a Commercial Aircraft

We now apply the method detailed in Section 3 to a more complex example: the automatic landing

of a large civil jet aircraft. Automatic landing systems, as the name implies, use information from

the aircraft as well as from the airport facilities to guide the aircraft to a smooth touchdown on

the runway. While highly automated, autoland systems require pilot interaction and supervision

in order to successfully complete a landing. Additionally, in the case of an aborted landing, the

pilot intervenes to initiate an automated go-around maneuver. While the automation enacts the

low-level control necessary for an aircraft to track desired landing and go-around trajectories, the

pilot sets parameters, changes the aircraft’s configuration, and enacts high-level mode changes.

Autoland systems are complex, safety-critical systems, and are subject to stringent certification

criteria [34]. Modeling the aircraft’s behavior, which incorporates logic from the autopilot as well as

inherently complicated aircraft dynamics, results in a high-dimensional hybrid system with many

continuous and discrete states. Naturally, only a subset of this information is displayed to the pilot.

Choosing which information should be included in the subset is critical: this information must

32



Rollout

Flare

Flaps-20

1000’

50’

glideslope signal

Flaps-30

Flaps-25

Glideslope capture

Figure 25: Typical landing scenario. The dots indicate transitions in autopilot mode during a
typical landing procedure: ‘Approach’, ‘Capture’,‘Glideslope’,‘Flare’,and ‘Rollout’. Additionally,
the pilot is instructed that the aircraft should be in Flaps-20 (with the landing gear down) before
glideslope capture; and that the aircraft should sequence through Flaps-25 and Flaps-30 by the
time the aircraft reaches 1000 feet.

adequately represent the hybrid system’s behavior. The problem of determining which information

adequately represents the underlying hybrid system is closely related to problems in observability:

a system is observable if the state of the system can be accurately reconstructed from the output

of the system. The output often represents a reduced set of information about the state of the

system. While both continuous and discrete system observability are well-researched issues [35],

hybrid system observability is a more recent topic, with results mainly for hybrid systems with

linear or affine continuous dynamics [36, 37, 38, 39].

We wish to determine, for an automatic landing/go-around maneuver of a highly automated

civil jet aircraft, which information the pilot must have in order to safely maneuver the aircraft.

We will first discuss the autoland/go-around maneuver in more detail, then formulate it as a hybrid

human-automation system in which it is critical that the continuous state remain within certain

bounds to maintain safe operation. We separate the hybrid system into two hybrid subsystems,

and perform a hybrid reachability analysis on each subsystems. As in detailed Section 3.4, the

reachability results provide the means to create a discrete system which represents the hybrid

human-automation system. This abstraction can then be used in user-interface analysis and design.

In a typical autoland maneuver (Figure 25), the aircraft begins its approach approximately 10

nautical miles from the touchdown point. The pilot extends the landing gear (down) sets the flaps,

aerodynamic surfaces on the trailing edge of the sings, to the setting Flaps-20. The aircraft descends

33



Toga-Max Toga-Up AltitudeFlare

Rollout

ẋ = f1(x, u) ẋ = f4(x, u) ẋ = f1(x, u)

h ≥ haltḣ ≥ 0

ẋ = f3(x, u)

σTOGA

h = 0

ẋ = 0

Figure 26: Hybrid procedural automaton Hprocedure. The dynamics are described in Section 4.1
and correspond to aerodynamics constants enumerated in Table 3.

towards the glideslope, an inertial radio beam which the aircraft can track. The autopilot captures

the glideslope signal about five nautical miles from the touchdown point. The pilot extends the

flaps, which increases drag on the wing and maintains lift at low speeds. The pilot extends the

flaps through Flaps-25 and Flaps-30 before the aircraft reaches 1000’ altitude. At approximately

50’, the aircraft leaves the glideslope and begins the flare maneuver, which allows the aircraft to

touchdown smoothly on the runway with an appropriate descent rate.

If for any reason the pilot or air traffic controller deems the landing unacceptable (debris on

the runway, a potential conflict with another aircraft, or severe wind shear near the runway, for

example), the pilot must initiate a go-around maneuver. A go-around maneuver can be initiated at

any time after the glideslope has been captured and before the aircraft touches down. In a typical

autoland, pushing the go-around button engages a sequence of events designed to make the aircraft

climb as quickly as possible to a preset missed-approach altitude (usually about 2500’).

4.1 Hybrid Procedural Automaton

The hybrid procedural model (Figure 26) focuses on a small portion of the autoland procedure,

beginning with the flare maneuver. We consider the longitudinal dynamics only, in which the

continuous state x = [V, γ, h] ∈ R
3 represents the aircraft’s speed V , flightpath angle γ, and

altitude h. The continuous inputs are u = [T, α], assuming direct control over the aircraft’s thrust

T and angle of attack α.

The initial state of the procedural model is the Flare mode (Figure 26). In Flare mode, the

34



flaps are at Flaps-30 and the thrust is fixed at idle. During normal autolands, the aircraft switches

to Rollout mode upon touchdown. (We do not model the aircraft’s behavior as it rolls along the

runway.) When a pilot initiates a go-around maneuver (often called a “TOGA” due to the “Take-

Off/Go-Around” indicator on the pilot display), the pilot changes the flaps to Flaps-20 and the

autothrottle forces the thrust to Tmax (Toga-Max mode). When the aircraft obtains a positive rate

of climb, the pilot raises the landing gear and the autothrottle allows the thrust to take on any

value in the range T ∈ [0, Tmax] (Toga-Up mode). The aircraft continues to climb to the missed

approach altitude halt, and then automatically switches into an altitude-holding mode, Altitude.

Go-arounds are unpredictable and may be required at any time during the autoland prior to

touchdown. Yet, only the pilot has the authority to initiate this maneuver. We therefore model

σTOGA as a user-controlled transition. We model certain events as simultaneous: σTOGA and

changing the flaps to Flaps-20, and ḣ ≥ 0 and raising the landing gear.

As in [40], we model the nonlinear longitudinal dynamics in the path frame as









mV̇

mV γ̇

ḣ









=









−D(α, V ) + T cos α − mg sin γ

L(α, V ) + T sinα − mg cos γ

V sin γ









(9)

We assume the aircraft has mass m = 190000 kg, and the gravitational constant is g = 9.81

m/s2. The aircraft has pitch θ = α + γ. In equation (9), lift L(α, V ) and drag D(α, V ) account

for the specific aerodynamic properties of the aircraft of interest. They can be obtained from the

dimensionless lift and drag coefficients CL and CD,

L(α, V ) =
1

2
ρV 2SCL(α) (10)

D(α, V ) =
1

2
ρV 2SCD(α) (11)

with air density ρ = 1.225 kg/m3 and wing surface area S = 427.80 m2.

CL(α) = CL0 + CLαα (12)

CD(α) = CD0 + KC2
L(α) (13)

Equation (12) results from thin airfoil theory [41], and can be adapted to a full aircraft [42] by

an appropriate choice of the positive constants CL0 and CLα . Equation (13), known as the “drag

polar”, results from lifting line theory [41] and applies to a clean wing (no fuselage and engines), but

can be extended to a full aircraft [42], by incorporating aircraft characteristics in the coefficients

CD0 and K. The coefficients CL0 , CLα , CD0 and K thus depend on the flight configuration of

35



Dynamics CL0 CD0 K Flaps Setting Landing Gear

ẋ = f1(x, u) 0.4225 0.024847 0.04831 Flaps-20 Down
ẋ = f2(x, u) 0.7043 0.025151 0.04831 Flaps-25 Down
ẋ = f3(x, u) 0.8212 0.025455 0.04831 Flaps-30 Down
ẋ = f4(x, u) 0.4225 0.019704 0.04589 Flaps-20 Up
ẋ = f5(x, u) 0.7043 0.020009 0.04589 Flaps-25 Up
ẋ = f6(x, u) 0.8212 0.020313 0.04589 Flaps-30 Up

Table 3: Aerodynamic constants for autoland modes.

Mode V [m/s] γ [degrees] α [degrees] T [N]

Flare [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦] 0
Toga-Max [63.79, 97.74] [−6.0◦, 0.0◦] [−8◦, 12◦] Tmax

Toga-Up [63.79, 97.74] [0.0◦, 13.3◦] [−8◦, 12◦] [0, Tmax]
Altitude [63.79, 97.74] [−0.7◦, 0.7◦] [−8◦, 12◦] [0, Tmax]

Table 4: State bounds for autoland modes of Hprocedure.

the aircraft as well as its geometry. We calculated and estimated these values, which are typical

for large civil aircraft, from data in [40, 43, 44, 45, 46]. The lift coefficient slope CLα = 5.105

for all modes; other coefficients are summarized in Table 3. The computation of CL0 includes

estimates of the additional lift provided by flaps and slats. The constant CD0 includes terms due to

aircraft aerodynamic shape, deployment of landing gear, flap and slat deflection. The constant K is

determined analytically [41] as a function of the aerodynamic characteristics of the aircraft: aspect

ratio, which is the ratio of the span length squared to the wing surface area, and span efficiency

factor, which relates the lift of a given wing to an ideal, elliptical lift distribution.

Each mode in the procedural automaton is subject to state and input bounds, due to constraints

arising from aircraft aerodynamics and desired aircraft behavior. These are summarized in Table

4. The bounds on V and α are determined by stall speeds and structural limitations for each flap

setting [46, 42]. The stall angle (maximum value of α) is the value of α which corresponds to

the maximum lift coefficient. The maximum allowed α is thus determined for each aircraft using

this value. The stall speed can be computed analytically, using the landing configuration of the

aircraft (mass, wing surface area, maximum lift coefficient, air density). Bounds on γ and T are

determined by the desired maneuver [47, 48], with Tmax = 686700 N. Additionally, at touchdown,

θ ∈ [0◦, 12.9◦] to prevent a tail strike, and ḣ ≥ −1.829 m/s to prevent damage to the landing

gear. These restrictions determine the allowable regions of operation in landing and go-around

maneuvers.

36



Toga−Max Toga−Up AltitudeFlare

Rollout

ẋ = f1(x, u) ẋ = f4(x, u) ẋ = f1(x, u)

γ3γ2

ẋ = f3(x, u)

σTOGA

γ1

ẋ = 0

Hflare

Htoga

Figure 27: Hybrid subsystems for landing/go-around scenario. The events are relabeled from
Hprocedure as shown in Figure 26, so that γ1 occurs when h = 0, γ2 occurs when ḣ ≥ 0, and γ3

occurs when h ≥ halt.

Subsystem V [m/s] γ [degrees] h [m]

Hflare [50, 100] [-8, 17] [-5, 20]
Htoga [50, 100] [-8, 17] [-5, 20]

Table 5: Computational domain for autoland hybrid subsystems.

4.2 Reachability Analysis of Hybrid Subsystems

In order to determine the subset of the allowable region of operation in which we can guarantee

the aircraft can remain safe, we separate the hybrid procedural model Hprocedure across the user-

controlled switch σTOGA. This separation results in two hybrid subsystems, Hflare and Htoga, as

shown in Figure 27. We complete a hybrid reachability analysis within each hybrid subsystem

in order to determine the set of continuous states in each subsystem, in which the aircraft can

land or go-around, respectively, while meeting the state and input constraints detailed in Section

4.1. The constraints for the aircraft to land define (Wflare)0, and the constraints for the aircraft to

go-around define (Wtoga)0. In the computation of the reachable set for each subsystem, automatic

transitions are smoothly accomplished in by modeling the change in dynamics across the switching

surface as another nonlinearity in the dynamics. Additionally, for the reachability computation we

assume in Htoga that if the aircraft leaves the top of the computational domain (h = 20 m) without

exceeding its flight envelope, it is capable of achieving Altitude mode, which we consider safe. The

computational domain for each subsystem is indicated in Table 5.

37



Figure 28: Allowable region (Wflare)0 (states
inside wireframe box) and safe region Wflare

(states within solid) in hybrid subsystem
Hflare.

Figure 29: Allowable region (Wtoga)0 (states
within wireframe box) and safe region Wtoga

(states within solid) in hybrid subsystem
Htoga.

Figure 28 depicts the boundary of the allowable region (Wflare)0 (shown as the wireframe box)

as well as the computational result for Wflare (solid). Similarly, Figure 29 depicts the boundary of

(Wtoga)0 (wireframe box) as well as Wtoga (solid). Figure 30 shows the intersection of the two safe

regions in the state-space. The solid shape indicates the region of intersection between the two

modes: in this region both safe landing and safe go-around are possible. The analysis shows that

when the aircraft begins in Flare, there are states from which a safe landing is possible, but a safe

go-around is not.

4.3 Discrete Abstraction

It is now possible to use the result of the hybrid reachability analysis to abstract from it a discrete

system. Such a discrete system, which encompasses the regions calculated through the hybrid

reachability analysis, can then be used to perform further analysis, such as interface analysis,

verification, or design.

In most commercial aircraft, the low-level control is performed by the autopilot, which has

authority over small control surface movement. The details of the low-level control are hidden from

the pilot, who anticipates system behavior by understanding the behavior of each autopilot mode.

In some instances, the pilot allows the autopilot to directly control mode switches. We therefore

assume an automated controller enforces u = u∗(x), but leave it to the pilot to enforce any discrete

switches necessary to maintain safety. This assumption mimics the hierarchical nature of highly

automated aircraft, in which pilots supervise the automation by enacting discrete switches. In this

supervisory role, the pilots always have the option not to enact a recommended switch.

38



Figure 30: The solid (red) shape is the safe region Wflare ∩Wtoga, from which safe landing and safe
go-around is possible. The meshes depict Wflare (dark mesh, dark blue) and Wtoga (light mesh,
green).

There is only one mode in Hprocedure from which a user-controlled transition (σTOGA) is possible:

Flare. This mode is abstracted according to its partition with Toga-Max = Rprocedure(Flare, σTOGA),

so results in 3(1+1) = 9 modes in G∗
procedure, as shown in Figure 31. The remaining modes (Rollout,

Toga-Max, Toga-Up, and Altitude) each result in 3(1+0) = 3 discrete modes in G∗
procedure, since no

user-controlled transitions are possible from these modes in Hprocedure. The modes in the upper

half of Figure 31 correspond to modes in Hflare, while modes in the lower half correspond to Htoga.

For clarity, the modes which correspond to safe regions of the state-space are solidly colored; modes

which correspond to unsafe regions have hashed marks. While Figure 31 depicts the entire state-

space of Hprocedure, we restrict the initial states Q0
procedure of G∗

procedure to lie within or on the

boundary of the region for safe landing in Flare mode.

4.4 Implications for User-Interface Analysis

The results of the hybrid reachability analysis show that there exists a region from which safe

landing is assured, but a safe go-around is not assured. This region, of course, is problematic.

When we consider possible pilot interaction with the model of the system described here, there are

two additional problems: 1) the pilot is unaware of this region, and 2) even if the pilot is told about

the existence of this region, there is no display in the cockpit to tell the pilot that the autopilot is

in a region from which a safe go around is not assured.

It is possible, however, to provide feedback to the pilot about this region (from which a safe

go-around is not assured). Using the same approach that we discussed earlier in the automotive

problem, it is possible to develop an interface that will indicate to the pilot when the aircraft

is about to enter the region from which a safe go around is not assured. Therefore, one of the

39



γ2

γ3 γ3

αAltitude

γ2 γ2 γ2

γ3

γ2

γ3γ3

αRollout

βRollout

αTogaMax βTogaMax

βTogaMax

(

WAltitude
toga

)c

(

W
TogaUp
toga

)c(

W
TogaUp
toga

)

◦
∂W

TogaUp
toga

βAltitude

∂WAltitude
toga

(

WAltitude
toga

)

◦

αTogaUp

βTogaUp

σTOGAσTOGAσTOGA σTOGA σTOGA

θTogaMax

σTOGAσTOGA

(

W
TogaMax
toga

)c
∂W

TogaMax
toga

αTogaMax
(

W
TogaMax
toga

)

◦

∂W
Rollout
flare

γ1

γ1

γ1

γ1

γ1

γ1

γ1

γ1

γ1 γ1

γ1

γ1

γ1

γ1

γ1

(

WFlare
flare

)c
∩

(

W
TogaMax
toga

)

◦

(

WFlare
flare

)c
∩

(

W
TogaMax
toga

)c

ηTogaMaxηTogaMax

σTOGA σTOGA

(

WFlare
flare

)c
∩ ∂W

TogaMax
toga

∂WFlare
flare ∩

(

W
TogaMax
toga

)

◦

∂WFlare
flare ∩

(

W
TogaMax
toga

)c

∂WFlare
flare ∩ ∂W

TogaMax
toga

θTogaMax

αTogaMax

αFlare
(

WFlare
flare

)

◦
∩

(

W
TogaMax
toga

)

◦

(

WFlare
flare

)

◦
∩

(

W
TogaMax
toga

)c

(

WFlare
flare

)

◦
∩ ∂W

TogaMax
toga

θTogaMax

αTogaMax βTogaMax βTogaMax

ηTogaMax

βFlare

βFlare

βFlare

αFlare

(

WRollout
flare

)

◦
(

WRollout
flare

)c

αFlare

Figure 31: Abstracted procedural model G∗
procedure for autoland/go-around maneuver. Modes in

the set of initial modes Q0
procedure are bolded.

pilot’s tasks, in this case, with respect to the model discussed above, is to avoid entering the unsafe

go-around region. The design of such an (advisory) interface must take into account the pilot’s

reaction time, the dynamics of the airplane, and the various control options (such as increased

thrust) that are available to the pilot to prevent the airplane from entering the problematic region.

There are many different ways to inform the pilot about possible actions to keep the aircraft in

a safe region of operation. One way to advise the user about this situation is to create an interface

which differentiates between the region of the state-space in Flare from which a safe go-around is

possible, and the region in Flare from which a safe go-around is not possible. The interface could

also indicate possible continuous control actions, such as “Increase speed” or “Climb”, that would

help the pilot reach the region of Flare from which a safe go-around is possible. Alternatively,

the restrictions this procedure assumed (such as concurrent transitions) can be relaxed to allow

the pilot more control actions as well as increase the region in Flare from which a go-around can

40



be safely accomplished. The hybrid reachability analysis and subsequent abstraction to a discrete

system would be performed by the same method as presented here.

However, if even after these steps, there are still regions from which a safe go-around is not

possible according to the maneuvers specified, we could complete a separate reachability analysis to

determine regions in the state-space from which a recovery to safety is possible. As opposed to the

computation of the unsafe region during the green light in the yellow interval problem (Figure 5),

this computation would involve specifying additional control actions that the pilot or the aircraft

could take, as well as a new formulation of the reachability problem. The computed results of the

analysis already presented (Figure 30) would be used as the initial conditions in a new reachability

analysis: this analysis would tell us whether it is possible, with these additional control actions,

to reach the safe region of operation from the states which, according the prior analysis and prior

control actions, a safe go-around is not possible. This differs from the prior analysis in that we

now wish to determine those set of states which can, through a recovery maneuver, reach the safe

regions of Figure 30.

These approaches are directions for future work.

41



5 Implications for User-Interface Design and Analysis

This report presents a methodology for the analysis of automated hybrid control systems that

include user interaction. The methodology makes use of hybrid reachability algorithms and com-

putational tools [18, 19]. The advantage of this methodology is that it incorporates, by construction,

the coupling between the continuous behaviors of the dynamical system, discrete mode logic, as well

as user interaction with the system. As such, the methodology presented here has two important

implications for user interface design.

First, as shown in the automotive example and in the case of the autoland example, it is

possible to use this hybrid reachability methodology to analyze and identify different regions within

the operational state-space of the system. These regions are important to the user, because they

prompt decisions and/or control actions. At the very least, it is important that the user know about

and understand the different regions in the operating space that affect the user’s interaction and

supervision of the system. This is critical for designing interfaces for complex automated systems,

and to this end, the hybrid reachability analysis can be used as the foundation for the construction

and design the user-interface.

With regards to interface design, the approach presented here is not concerned with the layout

and color-coding of the interface, but rather in the information content provided on the interface.

Namely, we are interested in determining what information the user needs in order to control the

system safely. Nevertheless, just indicating to the user in what region of the state space the system

is in – is not enough. When it comes to unsafe regions, the user must also be provided with

advance information (warning) when the system is about to enter the unsafe region. As shown in

the automotive example, there are various control schemes and corresponding interface indications

that can be employed to aid the driver in the task of avoiding the unsafe region.

The second important implication of this work is for verification of interfaces. The methodology

described here shows how, with the aid of the hybrid system reachability tool, it is possible to

transform a complex hybrid system to an equivalent discrete representation. This (abstracted)

representation is very important for interface design, because it makes it possible application of

existing interface verification techniques. Specifically, once the hybrid system is described in a

discrete representation and the interface is modeled as a discrete event system, it is possible to

verify that an interface is correct. Namely, that there exist no error modes, no blocking modes,

and no augmenting modes [1, 25].

An error mode represents a divergence between the underlying system and the user interface.

For example, if the system is in one mode but the interface shows that the system is in another

mode, the system has a serious design flaw. A blocking mode represents a situation in which the

42



user is unaware that certain events can trigger mode changes in other parts of the system. The

interface abstracts away this information, but if the user accidentally or unintentionally presses the

button at the wrong time, the system will switch modes (to user’s dismay). An augmenting mode

represents a situation in which the interface indicates that a certain mode change is possible, when

in fact the machine has no such mode or it can not enter it (for example, if it is disabled). (See

[25] for additional information regarding these interfaces verification criteria and the mechanics of

the interface verification process).

The existence of error, blocking, or an augmenting modes in any interface is a serious design

deficiency that should be avoided. This is particularly acute when considering safety-critical sys-

tems, and this is why interface verification is critical. The methodology described here, coupled

with the techniques described in [25], are an important step toward verification of user interaction

with hybrid systems.

43



6 Conclusions and Limitations

There is an ongoing debate in aviation, space, and other safety-critical industries about the role

of the operator and the extent to which automation can and should be used [3, 4]. This debate

has been fueled by incidents and accidents in which operators were surprised about the behavior

of the automation. While the debate will continue for decades to come, it is clear that some of the

problems in human-automation interaction stem from design problems. The methodology described

in this report aims to identify these design problems before they contribute to mishaps.

This report presents a methodology for analysis of hybrid systems which encompass user-

interaction. The formal methodology discussed here involves three steps: 1) separation of the

hybrid procedural model into hybrid subsystems across user-controlled switches, 2) hybrid reacha-

bility analysis and controller synthesis of each hybrid subsystem, and 3) abstraction to a discrete

system based on the reachability result. Once the hybrid system is described as an equivalent

discrete system, and the user-interface is also modeled as a discrete system, it is possible to make

an additional step and use the verification methods of [25] to ensure that the interface is correct.

Two examples were presented in this report: the yellow interval dilemma, and pilot interaction

with aircraft automation during a go-around maneuver. These examples served to demonstrate

the methodology and its application. Because it is a general methodology, it is applicable to

more complicated systems and more elaborate descriptions of procedures and interfaces than those

presented here. The key contribution of this work is to create an abstraction of hybrid systems

based on a hybrid reachability result: the resultant discrete system is one for which existing interface

verification and design techniques [1, 25] can be implemented.

The methodology presented here makes assumptions regarding control theoretic, human-factors,

and operational issues. The main control theoretic assumptions involve hierarchical control as well

as complete and accurate state measurements. Implementation of hierarchical goals and control

schemes is an active topic of research [49, 50, 51]. We assume that the low-level controllers which

enforce safety are already in place and work flawlessly with other goals. Smoothly incorporating

potentially conflicting goals is a difficult problem. In highly automated aircraft, envelope protection

schemes are frequently added on to existing control schemes [48], and validated in simulators.

Additionally, as stated in Section 3, we assume full and accurate information about the continuous

state. Although the controllers for safety will likely have full access to the continuous state, in any

real system there will inevitably be noise in state measurements, and estimates of the state will

be necessary. A clear direction of future work is to examine this same verification problem in the

context of uncertain state measurements.

With regards to human factors issues, the methodology presented here only addresses what

44



information is displayed, since this can be quantified within a known mathematical framework. It

does not address how the information is displayed.

With regards to operational issues, the methodology presented here assumes a specified proce-

dure. Procedures are described in manuals and taught to operators (such as pilots) during training.

To be able to verify user-interaction with hybrid systems, we assumed in this report that the user

strictly follows a given procedure. However, operators do not always follow a procedure [52]. Al-

though specific sequences of user actions must be encoded in the procedural model, this model can

always be extended to incorporate additional sequences of user actions, even all possible sequences

of the “truth” model

While we have focused in this section on the limitations of our assumptions, it is important

to note that the main advantage of this methodology is that it incorporates, by construction,

the coupling between the continuous behaviors of the aircraft and the automation and autopilot

logic. Verification within a hybrid framework accounts for the inherently complicated dynamics

underlying the simple, discrete representations displayed to the user. The method presented here

directly accounts for the user’s prerogative in determining system safety in modeling of the user’s

interaction with the system. While no guarantees can be made about the user’s actions, this

methodology provides a mathematical guarantee that the discrete abstraction contains correct

information regarding the effect of the user’s actions on system safety. With this abstraction, an

interface can be designed to ensure that user is provided with the correct information to complete

the desired procedure or task.

Acknowledgments

We would like to acknowledge Michael Heymann for his contributions to the interface analysis and

verification methods which inspired this work. We would also like to thank David Austin, Randall

Mumaw, and Charles Hynes for their help regarding the aircraft autoland scenario. Ian Mitchell

developed the computational tool used to obtain the hybrid reachability result, and Alexandre

Bayen developed a generic civil jet aircraft model method which was adapted for our use in the

aircraft autoland scenario.

45



References

[1] M. Heymann and A. Degani, “On abstractions and simplifications in the design of human-

automation interfaces,” NASA Technical Memorandum 211397, NASA Ames Research Center,

Moffett Field, CA, 2002.

[2] Federal Aviation Administration, “Federal aviation regulations,” FAR 121.1329, 2002.

[3] C. Billings, Aviation Automation: The Search for a Human-Centered Approach. Hillsdale, NJ:

Erlbaum, 1997.

[4] E. Wiener and R. Curry, “Flight-deck automation: promises and problems,” NASA Technical

Memorandum 81206, NASA Ames Research Center, Moffett Field, CA, June 1980.

[5] R. Parasuraman, T. Sheridan, and C. Wickens, “A model for types and levels of human

interaction with automation,” IEEE Transactions on Systems, Man, and Cybernetics Part A:

Systems and Humans, vol. 30, May 2000.

[6] N. Sarter, D. Woods, and C. Billings, “Automation surprises,” in Handbook of Human Factors

and Ergonomics, pp. 1295–1327, NY: John Wiley and Sons, Inc., 1999.

[7] N. Sarter and D. Woods, “How in the world did we get into that mode? Mode error and

awareness in supervisory control,” Human Factors, vol. 37, no. 1, pp. 5–19, 1995.

[8] E. Palmer, “Oops, it didn’t arm - a case study of two automation surprises,” in 8th Interna-

tional Symposium on Aviation Psychology, (Columbus, Ohio), 1995.

[9] J. Rushby, “Analyzing cockpit interfaces using formal methods,” in Electronic Notes in Theo-

retical Computer Science, 43, Elsevier Science B.V., 2001.

[10] R. Butler, S. Miller, J. Potts, and V. Carreno, “A formal methods approach to the analysis

of mode confusion,” in Proceedings of the AIAA/IEEE Digital Avionics Systems Conference,

pp. C41/1–C41/8, 1998.

[11] A. Degani, M. Heymann, G. Meyer, and M. Shafto, “Some formal aspects of human-automation

interaction,” NASA Technical Memorandum 209600, NASA Ames Research Center, Moffett

Field, CA, April 2000.

[12] N. Leveson and E. Palmer, “Designing automation to reduce operator errors,” in In the Pro-

ceedings of the IEEE Conference on Systems, Man, and Cybernetics, (Orlando, FL), pp. 1144–

1150, 1997.

46



[13] N. Leveson, L. Pinnel, S. Sandys, S. Koga, and J. Reese, “Analyzing software specifications

for mode confusion potential,” in Proceedings of a Workshop on Human Error and System

Development (C. Johnson, ed.), pp. 132–146, Glasgow, Scotland: Glasgow Accident Analysis

Group, March 1997.

[14] S. Vakil, A. Midkiff, T. Vaneck, and R. Hansman, “Mode awareness in advanced autoflight

systems,” in Proceedings of the 6th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design,

and Evaluation of Man-Machine Systems, (Cambridge, MA), 1995.

[15] S. Vakil and J. Hansman, “Analysis of complexity evolution management and human perfor-

mance issues in commercial aircraft automation systems,” ICAT-2000-3, Massachusetts Insti-

tute of Technology, Cambridge, MA, May 2000.

[16] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid verification of an interface

for an automatic landing,” in Proceedings of the IEEE Conference on Decision and Control,

(Las Vegas, NV), pp. 1607–1613, December 2002.

[17] C. Tomlin, Hybrid Control of Air Traffic Management Systems. PhD thesis, University of

California, Berkeley, CA, September 1998.

[18] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to controller design for

hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949–970, 2000.

[19] I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Computing reachable sets for continuous dy-

namic games using level set methods,” IEEE Transactions on Automatic Control. Submitted,

December 2001.

[20] I. Mitchell, Application of Level Set Methods to Control and Reachability Problems in Continu-

ous and Hybrid Systems. PhD thesis, Department of Scientific Computing and Computational

Mathematics, Stanford University, Stanford, CA, August 2002.

[21] E. Clarke and R. Kurshan, “Computer-aided verification,” IEEE Spectrum, vol. 33, pp. 61–67,

June 1996.

[22] Intel Corporation, “Detailed statistical analysis of floating point

flaw in pentium processors.” White Paper, November 1994.

http://support.intel.com/support/processors/pentium/fdiv/wp.

[23] J. Rushby, “Using model checking to help discover mode confusions and other automation

surprises,” in Proceedings of the Workshop on Human Error, Safety, and System Development

(HESSD), (Belgium), June 1999.

47



[24] J. Crow, D. Javaux, and J. Rushby, “Models and mechanized methods that integrate human

factors into automation design,” in International Conference on Human-Computer Interaction

in Aeronautics, (Toulouse, France), September 2000.

[25] A. Degani and M. Heymann, “Formal verification of human-automation interaction,” Human

Factors, vol. 44, no. 1, pp. 28–43, 2002.

[26] I. Mitchell, A. Bayen, and C. Tomlin, “Validating a Hamilton-Jacobi approximation to hybrid

system reachable sets,” in Hybrid Systems: Computation and Control (M. D. Benedetto and

A. Sangiovanni-Vincentelli, eds.), LNCS 2034, pp. 418–432, Springer Verlag, March 2001.

[27] A. Crawford, “Driver judgment and error during the amber period at traffic lights,” Er-

gonomics, vol. 5, pp. 513–532, October 1962.

[28] ITE Technical Council Task Force 4TF-1, “Determining vehicle signal change and clearance

intervals,” tech. rep., Institute of Transportation Engineers, Washington, D.C., August 1994.

[29] W. Stimpson, P. Zador, and P. Tarnoff, “The influence of the time duration of yellow traffic

signals on driver response,” ITE Journal, pp. 22–29, November 1980.

[30] C. Liu, R. Herman, and D. Gazis, “A review of the yellow interval dilemma,” Transportation

Research A, vol. 30, no. 5, pp. 333–348, 1996.

[31] D. Gazis, R. Herman, and A. Maradudin, “The problem of the amber signal light in traffic

flow,” Operations Research, vol. 8, pp. 112–132, January-February 1960.

[32] Office of the Majority Leader, U.S. House of Representatives, “The red light running crisis: Is

it intentional?,” May 2001. http://www.freedom.gov/auto.

[33] I. Mitchell and C. Tomlin, “Level set methods for computation in hybrid systems,” in Hybrid

Systems: Computation and Control (B. Krogh and N. Lynch, eds.), LNCS 1790, Springer

Verlag, March 2000.

[34] Federal Aviation Administration, “Criteria for approval of Category III weather minima for

takeoff, landing, and rollout,” Advisory Circular 120-28D, U.S. Department of Transportation,

July 1999.

[35] C. Cao, F. Lin, and Z. Lin, “Why event observation: observability revisited,” Discrete Event

Dynamic Systems: Theory and Applications, vol. 7, pp. 127–149, 1997.

[36] R. Vidal, A. Chiuso, and S. Soatto, “Observability and identifiability of jump linear systems,”

in Proceedings of the IEEE Conference on Decision and Control, (Las Vegas, NV), 2002.

48



[37] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and controllability of piece-

wise affine and hybrid systems,” IEEE Transactions on Control, vol. 45, no. 10, pp. 1864–1876,

October 2000.

[38] C. Cao, “Supervisory control of a class of hybrid dynamic systems,” in Proceedings of the 36th

Midwest Symposium on Circuits and Systems, (Detroit, MI), pp. 967–970, August 1993.

[39] M. Mohrenschildt, “Hybrid systems: solutions, stability, and control,” in Proceedings of the

American Control Conference, (Chicago, IL), June 2000.

[40] A. Bayen and C. Tomlin, “Nonlinear hybrid automaton model for aircraft landing,” SUDAAR

737, Dept. of Aeronautics and Astronautics, Stanford University, Stanford, CA, 2001.

[41] L. Prandtl and O. Tietjens, Applied Hydro- and Aeromechanics. New York: Dover Publications

(Eng. Societies Monographs), 1957 (1934).

[42] I. Kroo, Aircraft Design: Synthesis and Analysis. Stanford, CA: Desktop Aeronautics, 2001.

Pre-release Version 0.99, http://adg.stanford.edu/aa241/AircraftDesign.html.

[43] J. Roskam and C.-T. Lan, Airplane Aerodynamics and Performance. Lawrence, Kansas: De-

sign, Analysis, and Research Corporation, 1997.

[44] A. Flaig and R. Hilbig, “High-lift design for large civil aircraft,” in AGARD Conference Pro-

ceedings 515, (France), October 1992.

[45] S. Rogers, K. Roth, H. Cao, J. Slotnick, M. Whitlock, S. Nash, and M. Baker, “Computa-

tion of viscous flow for a Boeing 777 aircraft in landing configuration,” in AIAA Conference

Proceedings, no. 2000-4221, October 1992.

[46] L. Jenkinson, P. Simpkin, and D. Rhodes, Civil Jet Aircraft Design. Re-

ston, VA: American Institute of Aeronautics and Astronautics, Inc., 1999.

http://www.bh.com/companions/aerodata.

[47] C. Hynes, August 2001. Conversations at NASA.

[48] T. Lambregts, “Automatic flight control: Concepts and methods.” FAA National Resource

Specialist, Advanced Controls, 1995.

[49] J. Lygeros, C. Tomlin, and S. Sastry, “Multiobjective hybrid controller synthesis,” in Hybrid

and Real-Time Systems (O. Maler, ed.), LNCS 1201, pp. 109–123, Grenoble: Springer Verlag,

1997.

[50] X. Koutsoukos, P. Antsaklis, J. Stiver, and M. Lemmon, “Supervisory control of hybrid sys-

tems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 1026–1049, 2000.

49



[51] M. Oishi, C. Tomlin, V. Gopal, and D. Godbole, “Addressing multiobjective control: Safety

and performance through constrained optimization,” in Hybrid Systems: Computation and

Control (M. Di Benedetto and A. Sangiovanni-Vincentelli, eds.), LNCS 2034, pp. 459–472,

Springer Verlag, March 2001.

[52] A. Degani and E. Wiener, “On the design of flight-deck procedures,” tech. rep., NASA Con-

tractor Report 177642, NASA Ames, Moffett Field, CA, 1994.

50



REPORT DOCUMENTATION PAGE

8.  PERFORMING ORGANIZATION
     REPORT NUMBER

10.  SPONSORING/MONITORING
       AGENCY REPORT NUMBER

Form Approved
OMB No. 0704-0188

12b.  DISTRIBUTION CODE12a.  DISTRIBUTION/AVAILABILITY STATEMENT

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4.  TITLE AND SUBTITLE 5.  FUNDING NUMBERS

6.  AUTHOR(S)

1.  AGENCY USE ONLY (Leave blank)

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2.  REPORT DATE 3.  REPORT TYPE AND DATES COVERED

15.  NUMBER OF PAGES

16.  PRICE CODE

20.  LIMITATION OF ABSTRACT19.  SECURITY CLASSIFICATION
       OF ABSTRACT

18.  SECURITY CLASSIFICATION
       OF THIS PAGE

17.  SECURITY CLASSIFICATION
       OF REPORT

14.  SUBJECT TERMS

13.  ABSTRACT  (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11.  SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category  64 Distribution: Standard
Availability: NASA CASI (301) 621-0390

NASA/TM–2003-212803

November 2003

Ames Research Center
Moffett Field, CA 94035-1000

Stanford University, Stanford, CA 94305
National Aeronautics and Space Administration
Washington, DC  20546-0001

NASA Ames Research Center to San Jose
State University Foundation, under NCC2-
798, through human-automation theory
subelement (RTOP 548-40-12), DARPA
under MICA Program administered by
SPAWAR under contract N66001-01-C-
8080, DoD MURI program administered by
ONR under N00014-00-1-06637, NSF
Graduate Research Fellowship

65

Discrete Abstractions of Hybrid Systems: Verification of Safety
and Application to User-Interface Design

Meeko Oishi (Stanford University), Claire Tomlin ( (Stanford Univer-
sity), Asaf Degani (Ames Research Center)

Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic,
and the underlying continuous dynamics of the physical system. Often the user-interface of such systems
displays a reduced set of information about the entire system. In safety-critical systems, how can we identify
user-interface designs which do not have adequate information, or which may confuse the user? Here we
describe a methodology, based on hybrid system analysis, to verify that a user-interface contains informa-
tion necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows
us to account for the continuous dynamics underlying the simple, discrete representations displayed to the
user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft
autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodol-
ogy, which is applicable to hybrid systems (not fully automated) which have operational constraints we can
pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we
directly account for the user's interactions with the system.

interface verification, interface analysis, hybrid systems, nonlinear systems,
control theory, reachability, human interaction, pilot display, interface design

Technical Memorandum

Point of Contact:  Asaf Degani, Ames Research Center, MS 269-4,  Moffett Field, CA 94035-1000
   (650) 604-0013

Unclassified


